Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.689
Filtrar
1.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38586942

RESUMO

When proteins evolve new activity, a concomitant decrease in stability is often observed because the mutations that confer new activity can destabilize the native fold. In the conventional model of protein evolution, reduced stability is considered a purely deleterious cost of molecular innovation because unstable proteins are prone to aggregation and are sensitive to environmental stressors. However, recent work has revealed that nonnative, often unstable protein conformations play an important role in mediating evolutionary transitions, raising the question of whether instability can itself potentiate the evolution of new activity. We explored this question in a bacteriophage receptor-binding protein during host-range evolution. We studied the properties of the receptor-binding protein of bacteriophage λ before and after host-range evolution and demonstrated that the evolved protein is relatively unstable and may exist in multiple conformations with unique receptor preferences. Through a combination of structural modeling and in vitro oligomeric state analysis, we found that the instability arises from mutations that interfere with trimer formation. This study raises the intriguing possibility that protein instability might play a previously unrecognized role in mediating host-range expansions in viruses.


Assuntos
Evolução Molecular , Receptores Virais , Mutação , Receptores Virais/genética , Receptores Virais/metabolismo , Ligação Proteica
2.
Cell Mol Life Sci ; 81(1): 166, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581583

RESUMO

The Feline Leukemia Virus Subgroup C Receptor 1a (FLVCR1a) is a member of the SLC49 Major Facilitator Superfamily of transporters. Initially recognized as the receptor for the retrovirus responsible of pure red cell aplasia in cats, nearly two decades since its discovery, FLVCR1a remains a puzzling transporter, with ongoing discussions regarding what it transports and how its expression is regulated. Nonetheless, despite this, the substantial body of evidence accumulated over the years has provided insights into several critical processes in which this transporter plays a complex role, and the health implications stemming from its malfunction. The present review intends to offer a comprehensive overview and a critical analysis of the existing literature on FLVCR1a, with the goal of emphasising the vital importance of this transporter for the organism and elucidating the interconnections among the various functions attributed to this transporter.


Assuntos
Proteínas de Membrana Transportadoras , Receptores Virais , Gatos , Animais , Proteínas de Membrana Transportadoras/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo
3.
Viruses ; 16(2)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38400072

RESUMO

To identify host factors that affect Bovine Herpes Virus Type 1 (BoHV-1) infection we previously applied a genome wide CRISPR knockout screen targeting all bovine protein coding genes. By doing so we compiled a list of both pro-viral and anti-viral proteins involved in BoHV-1 replication. Here we provide further analysis of those that are potentially involved in viral entry into the host cell. We first generated single cell knockout clones deficient in some of the candidate genes for validation. We provide evidence that Polio Virus Receptor-related protein (PVRL2) serves as a receptor for BoHV-1, mediating more efficient entry than the previously identified Polio Virus Receptor (PVR). By knocking out two enzymes that catalyze HSPG chain elongation, HST2ST1 and GLCE, we further demonstrate the significance of HSPG in BoHV-1 entry. Another intriguing cluster of candidate genes, COG1, COG2 and COG4-7 encode six subunits of the Conserved Oligomeric Golgi (COG) complex. MDBK cells lacking COG6 produced fewer but bigger plaques compared to control cells, suggesting more efficient release of newly produced virions from these COG6 knockout cells, due to impaired HSPG biosynthesis. We further observed that viruses produced by the COG6 knockout cells consist of protein(s) with reduced N-glycosylation, potentially explaining their lower infectivity. To facilitate candidate validation, we also detailed a one-step multiplex CRISPR interference (CRISPRi) system, an orthogonal method to KO that enables quick and simultaneous deployment of three CRISPRs for efficient gene inactivation. Using CRISPR3i, we verified eight candidates that have been implicated in the synthesis of surface heparan sulfate proteoglycans (HSPGs). In summary, our experiments confirmed the two receptors PVR and PVRL2 for BoHV-1 entry into the host cell and other factors that affect this process, likely through the direct or indirect roles they play during HSPG synthesis and glycosylation of viral proteins.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Poliomielite , Humanos , Proteoglicanas de Heparan Sulfato , Internalização do Vírus , Receptores Virais/genética , Proteínas de Transporte
4.
J Virol ; 98(3): e0157623, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38323814

RESUMO

Adenovirus (AdV) infection of the respiratory epithelium is common but poorly understood. Human AdV species C types, such as HAdV-C5, utilize the Coxsackie-adenovirus receptor (CAR) for attachment and subsequently integrins for entry. CAR and integrins are however located deep within the tight junctions in the mucosa where they would not be easily accessible. Recently, a model for CAR-independent AdV entry was proposed. In this model, human lactoferrin (hLF), an innate immune protein, aids the viral uptake into epithelial cells by mediating interactions between the major capsid protein, hexon, and yet unknown host cellular receptor(s). However, a detailed understanding of the molecular interactions driving this mechanism is lacking. Here, we present a new cryo-EM structure of HAdV-5C hexon at high resolution alongside a hybrid structure of HAdV-5C hexon complexed with human lactoferrin (hLF). These structures reveal the molecular determinants of the interaction between hLF and HAdV-C5 hexon. hLF engages hexon primarily via its N-terminal lactoferricin (Lfcin) region, interacting with hexon's hypervariable region 1 (HVR-1). Mutational analyses pinpoint critical Lfcin contacts and also identify additional regions within hLF that critically contribute to hexon binding. Our study sheds more light on the intricate mechanism by which HAdV-C5 utilizes soluble hLF/Lfcin for cellular entry. These findings hold promise for advancing gene therapy applications and inform vaccine development. IMPORTANCE: Our study delves into the structural aspects of adenovirus (AdV) infections, specifically HAdV-C5 in the respiratory epithelium. It uncovers the molecular details of a novel pathway where human lactoferrin (hLF) interacts with the major capsid protein, hexon, facilitating viral entry, and bypassing traditional receptors such as CAR and integrins. The study's cryo-EM structures reveal how hLF engages hexon, primarily through its N-terminal lactoferricin (Lfcin) region and hexon's hypervariable region 1 (HVR-1). Mutational analyses identify critical Lfcin contacts and other regions within hLF vital for hexon binding. This structural insight sheds light on HAdV-C5's mechanism of utilizing soluble hLF/Lfcin for cellular entry, holding promise for gene therapy and vaccine development advancements in adenovirus research.


Assuntos
Adenovírus Humanos , Proteínas do Capsídeo , Lactoferrina , Receptores Virais , Internalização do Vírus , Humanos , Infecções por Adenovirus Humanos/metabolismo , Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/química , Adenovírus Humanos/genética , Adenovírus Humanos/metabolismo , Adenovírus Humanos/ultraestrutura , Sítios de Ligação/genética , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Lactoferrina/química , Lactoferrina/genética , Lactoferrina/metabolismo , Lactoferrina/ultraestrutura , Modelos Biológicos , Mutação , Ligação Proteica , Receptores Virais/química , Receptores Virais/genética , Receptores Virais/metabolismo , Receptores Virais/ultraestrutura , Solubilidade , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/virologia
5.
BMC Neurosci ; 25(1): 9, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383317

RESUMO

BACKGROUND: A pseudotyped modified rabies virus lacking the rabies glycoprotein (G-protein), which is crucial for transsynaptic spread, can be used for monosynaptic retrograde tracing. By coupling the pseudotyped virus with transgene expression of the G-protein and the avian leukosis and sarcoma virus subgroup A receptor (TVA), which is necessary for cell entry of the virus, researchers can investigate specific neuronal populations. Responder mouse lines, like the RΦGT mouse line, carry the genes encoding the G-protein and TVA under Cre-dependent expression. These mouse lines are valuable tools because they reduce the number of viral injections needed compared to when using helper viruses. Since RΦGT mice do not express Cre themselves, introducing the pseudotyped rabies virus into their brain should not result in viral cell entry or spread. RESULTS: We present a straightforward flowchart for adequate controls in tracing experiments, which we employed to demonstrate Cre-independent expression of TVA in RΦGT mice. CONCLUSIONS: Our observations revealed TVA leakage, indicating that RΦGT mice should be used with caution for transgene expression of TVA. Inaccurate tracing outcomes may occur if TVA is expressed in the absence of Cre since background leakage leads to nonspecific cell entry. Moreover, conducting appropriate control experiments can identify the source of potential caveats in virus-based neuronal tracing experiments.


Assuntos
Proteínas Aviárias , Vírus da Raiva , Camundongos , Animais , Design de Software , Receptores Virais/genética , Receptores Virais/metabolismo , Proteínas Aviárias/metabolismo , Vírus da Raiva/genética , Vírus da Raiva/metabolismo , Proteínas de Ligação ao GTP/metabolismo
6.
FASEB J ; 38(2): e23440, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38252072

RESUMO

CD155, a member of the immunoglobulin superfamily, is closely related to cell proliferation, adhesion, and migration. CD155 is overexpressed on the surface of cancer cells to promote cell proliferation and is upregulated in damaged tissues as a stress-induced molecule. The process of skeletal muscle regeneration after injury is complex and involves injurious stimulation and subsequent satellite cell proliferation. However, the role of CD155 in this process remains unelucidated. This study aimed to explore the role of CD155 in injured skeletal muscle regeneration and to clarify its effect on satellite cell proliferation and differentiation. Here, quantitative real-time polymerase chain reaction (RT-qPCR) and immunofluorescence results indicated that CD155 expression in satellite cells increased after skeletal muscle injury. CD155 knockout in mice impaired the regeneration of skeletal muscle. A bone marrow transplantation mouse model was constructed and revealed that CD155 on skeletal muscle tissues, not immune cells, affected muscle regeneration. In vitro, CD155 knockdown in myoblasts inhibited their proliferation and differentiation. The transcriptomic analysis also indicated that CD155 absence can impair the biological proliferation and differentiation process of myoblasts. Our research demonstrates that CD155 directly promotes injured muscle regeneration by regulating satellite cell proliferation and differentiation, which may be a potential therapeutic molecule for skeletal muscle injury.


Assuntos
Músculo Esquelético , Receptores Virais , Células Satélites de Músculo Esquelético , Animais , Camundongos , Transplante de Medula Óssea , Diferenciação Celular , Proliferação de Células , Receptores Virais/genética
7.
Virus Res ; 340: 199304, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142890

RESUMO

Influenza A viruses (IAVs) originate from wild birds but have on several occasions jumped host barriers and are now also circulating in humans and mammals. The IAV host receptors (glycans with galactose linked to a sialic acid (SA) in an α2,3 or α2,6 linkage) are crucial host factors restricting inter-species transmission. In general, avian-origin IAVs show a preference for SA-α2,3 (avian receptor), whereas IAVs isolated from humans and pigs prefer SA-α2,6 (human receptor). N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) are the two major SAs. Neu5Ac is expressed in all species, whereas Neu5Gc is only expressed in a limited number of domestic species such as pigs and horses, but not in humans. Despite that previous studies have shown that the IAV host receptor distribution appears to be similar in pigs and humans, none of these studies have investigated the expression of Neu5Gc-α2,6 in situ in porcine tissues. Thus, the aim of this study was to elucidate the distribution of IAV host receptors expressed in the porcine respiratory tract and relate the expression to the viral tropism of diverse host-adapted IAVs. The IAV receptor (SA-α2,3 and SA-α2,6) distribution and the presence of specifically Neu5Gc-α2,6 in the porcine nasal, tracheal, and lung tissues was investigated by lectin histochemistry. Furthermore, IAV immunohistochemistry was performed on tissues from pigs experimentally infected with IAVs, either adapted to pigs or humans, to investigate the significance of the IAV host receptors and the tropism of the diverse host-adapted IAVs. We document for the first time the expression of the avian receptor on the surface of the porcine nasal mucosa and an equal expression of Neu5Ac-α2,6 and Neu5Gc-α2,6 on the surface of the tracheal epithelium and alveoli. In all IAV-infected pigs, we found a low amount of IAV-positive cells in the trachea despite a high expression of the human receptor. Cumulatively, these findings suggest that optimal IAV replication involves a complex interplay between the viruses and their host receptors and that there might be other less clearly defined host factors that determine the site of replication.


Assuntos
Vírus da Influenza A , Influenza Humana , Orthomyxoviridae , Animais , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Mucosa Nasal , Receptores Virais/genética , Receptores Virais/metabolismo , Suínos , Traqueia
8.
Virol J ; 20(1): 276, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012648

RESUMO

The possibilities of cross-species transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) between humans and important livestock species are not yet known. Herein, we used the structural and genetic alignment and surface potential analysis of the amino acid (aa) in angiotensin-converting enzyme 2 (ACE2), tyrosine kinase receptor UFO (AXL), and neuropilin 1 (NRP1) in different species with substantial public health importance. The residues interfacing with the N-terminal domain (NTD) or receptor-binding domain (RBD) of S were aligned to screen the critical aa sites that determined the susceptibility of the SARS-CoV-2 to the host. We found that AXL and NRP1 proteins might be used as the receptors of SARS-CoV-2 in bovines. However, ACE2 protein may not be considered to be involved in the cross-species transmission of SARS-CoV-2 VOCs in cattle because the key residues of the ACE2-S-binding interface were different from those in known susceptible species. This study indicated that emerging SARS-CoV-2 variants potentially expand species tropism to bovines through AXL and NRP1 proteins.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Bovinos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/genética , COVID-19/veterinária , Neuropilina-1/genética , Neuropilina-1/metabolismo , Ligação Proteica , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química
9.
J Struct Biol ; 215(4): 108042, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37931730

RESUMO

Predicting the impact of new emerging virus mutations is of major interest in surveillance and for understanding the evolutionary forces of the pathogens. The SARS-CoV-2 surface spike-protein (S-protein) binds to human ACE2 receptors as a critical step in host cell infection. At the same time, S-protein binding to human antibodies neutralizes the virus and prevents interaction with ACE2. Here we combine these two binding properties in a simple virus fitness model, using structure-based computation of all possible mutation effects averaged over 10 ACE2 complexes and 10 antibody complexes of the S-protein (∼380,000 computed mutations), and validated the approach against diverse experimental binding/escape data of ACE2 and antibodies. The ACE2-antibody selectivity change caused by mutation (i.e., the differential change in binding to ACE2 vs. immunity-inducing antibodies) is proposed to be a key metric of fitness model, enabling systematic error cancelation when evaluated. In this model, new mutations become fixated if they increase the selective binding to ACE2 relative to circulating antibodies, assuming that both are present in the host in a competitive binding situation. We use this model to categorize viral mutations that may best reach ACE2 before being captured by antibodies. Our model may aid the understanding of variant-specific vaccines and molecular mechanisms of viral evolution in the context of a human host.


Assuntos
Receptores Virais , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Receptores Virais/química , Receptores Virais/genética , Receptores Virais/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Mutação , Ligação Proteica
10.
J Virol ; 97(11): e0091023, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37921471

RESUMO

IMPORTANCE: The main limitation of oncolytic vectors is neutralization by blood components, which prevents intratumoral administration to patients. Enadenotucirev, a chimeric HAdV-11p/HAdV-3 adenovirus identified by bio-selection, is a low seroprevalence vector active against a broad range of human carcinoma cell lines. At this stage, there's still some uncertainty about tropism and primary receptor utilization by HAdV-11. However, this information is very important, as it has a direct influence on the effectiveness of HAdV-11-based vectors. The aim of this work is to determine which of the two receptors, DSG2 and CD46, is involved in the attachment of the virus to the host, and what role they play in the early stages of infection.


Assuntos
Adenovírus Humanos , Desmogleína 2 , Proteína Cofatora de Membrana , Receptores Virais , Humanos , Adenovírus Humanos/genética , Adenovírus Humanos/metabolismo , Linhagem Celular , Desmogleína 2/genética , Desmogleína 2/metabolismo , Proteína Cofatora de Membrana/genética , Proteína Cofatora de Membrana/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo
11.
Biophys J ; 122(23): 4489-4502, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37897042

RESUMO

With hundreds of coronaviruses (CoVs) identified in bats that can infect humans, it is essential to understand how CoVs that affected the human population have evolved. Seven known CoVs have infected humans, of which three CoVs caused severe disease with high mortalities: severe acute respiratory syndrome (SARS)-CoV emerged in 2002, Middle East respiratory syndrome-CoV in 2012, and SARS-CoV-2 in 2019. SARS-CoV and SARS-CoV-2 belong to the same family, follow the same receptor pathway, and use their receptor-binding domain (RBD) of spike protein to bind to the angiotensin-converting enzyme 2 (ACE2) receptor on the human epithelial cell surface. The sequence of the two RBDs is divergent, especially in the receptor-binding motif that directly interacts with ACE2. We probed the biophysical differences between the two RBDs in terms of their structure, stability, aggregation, and function. Since RBD is being explored as an antigen in protein subunit vaccines against CoVs, determining these biophysical properties will also aid in developing stable protein subunit vaccines. Our results show that, despite RBDs having a similar three-dimensional structure, they differ in their thermodynamic stability. RBD of SARS-CoV-2 is significantly less stable than that of SARS-CoV. Correspondingly, SARS-CoV-2 RBD shows a higher aggregation propensity. Regarding binding to ACE2, less stable SARS-CoV-2 RBD binds with a higher affinity than more stable SARS-CoV RBD. In addition, SARS-CoV-2 RBD is more homogenous in terms of its binding stoichiometry toward ACE2 compared to SARS-CoV RBD. These results indicate that SARS-CoV-2 RBD differs from SARS-CoV RBD in terms of its stability, aggregation, and function, possibly originating from the diverse receptor-binding motifs. Higher aggregation propensity and decreased stability of SARS-CoV-2 RBD warrant further optimization of protein subunit vaccines that use RBD as an antigen by inserting stabilizing mutations or formulation screening.


Assuntos
SARS-CoV-2 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , Sítios de Ligação , Enzima de Conversão de Angiotensina 2/metabolismo , Receptores Virais/química , Receptores Virais/genética , Receptores Virais/metabolismo , Ligação Proteica , Domínios Proteicos
12.
Leukemia ; 37(11): 2250-2260, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37673973

RESUMO

Myelodysplastic syndromes (MDS) are myeloid neoplasms presenting with dysplasia in the bone marrow (BM) and peripheral cytopenia. In most patients anemia develops. We screened for genes that are expressed abnormally in erythroid progenitor cells (EP) and contribute to the pathogenesis of MDS. We found that the Coxsackie-Adenovirus receptor (CAR = CXADR) is markedly downregulated in CD45low/CD105+ EP in MDS patients compared to control EP. Correspondingly, the erythroblast cell lines HEL, K562, and KU812 stained negative for CAR. Lentiviral transduction of the full-length CXADR gene into these cells resulted in an increased expression of early erythroid antigens, including CD36, CD71, and glycophorin A. In addition, CXADR-transduction resulted in an increased migration against a serum protein gradient, whereas truncated CXADR variants did not induce expression of erythroid antigens or migration. Furthermore, conditional knock-out of Cxadr in C57BL/6 mice resulted in anemia and erythroid dysplasia. Finally, decreased CAR expression on EP was found to correlate with high-risk MDS and decreased survival. Together, CAR is a functionally relevant marker that is down-regulated on EP in MDS and is of prognostic significance. Decreased CAR expression may contribute to the maturation defect and altered migration of EP and thus their pathologic accumulation in the BM in MDS.


Assuntos
Anemia , Síndromes Mielodisplásicas , Humanos , Animais , Camundongos , Receptores Virais/genética , Células da Medula Óssea/metabolismo , Camundongos Endogâmicos C57BL , Síndromes Mielodisplásicas/metabolismo , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular , Anemia/metabolismo
13.
RNA Biol ; 20(1): 539-547, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528621

RESUMO

Angiotensin-converting enzyme 2 (ACE2) and several proteins have been identified as entry factors for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, whether long noncoding RNAs are involved in SARS-CoV-2 entry remains unknown. In this study, we investigated the role of small nucleolar RNA host gene 15 (SNHG15) in SARS-CoV-2 entry using a SARS-CoV-2 spike pseudotyped lentivirus with a luciferase reporter. Overexpression of SNHG15 promoted but SNHG15 knockdown limited SARS-CoV-2 entry in a dose- and time-dependent manner. SNHG15 interacted with Rab-like protein 2A (RABL2A). Overexpression and knockdown of RABL2A produced similar effects on SARS-CoV-2 entry as those of SNHG15. Furthermore, RABL2A knockdown abolished the SNHG15-mediated increase in SARS-CoV-2 entry. In conclusion, SNHG15 is a critical regulatory factor that aids SARS-CoV-2 entry through RABL2A.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , COVID-19/genética , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Receptores Virais/genética , Proteínas rab de Ligação ao GTP/metabolismo
14.
Virology ; 586: 122-129, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37542819

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is believed to have a zoonotic origin with bats suspected as a natural host. In this work, we individually express the ACE2 of seven bat species including, little brown, great roundleaf, Pearson's horseshoe, greater horseshoe, Brazilian free-tailed, Egyptian rousette, and Chinese rufous horseshoe in DF1 cells and determine their ability to support attachment and replication of SARS-CoV-2 viruses. We demonstrate that the ACE2 receptor of all seven species made DF1 cells permissible to SARS-CoV-2. The level of virus replication differed between bat species and variants tested. The Wuhan lineage SARS-CoV-2 virus replicated to higher titers than either variant virus tested. All viruses tested grew to higher titers in cells expressing the human ACE2 gene compared to a bat ACE2. This study provides a practical in vitromethod for further testing of animal species for potential susceptibility to current and emerging SARS-CoV-2 viruses.


Assuntos
COVID-19 , Quirópteros , Animais , Humanos , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2/genética , Receptores Virais/genética , Internalização do Vírus , Glicoproteína da Espícula de Coronavírus/genética
15.
Cancer Sci ; 114(9): 3649-3665, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37400994

RESUMO

As an epitranscriptomic modulation manner, N6 -methyladenosine (m6 A) modification plays important roles in various diseases, including hepatocellular carcinoma (HCC). m6 A modification affects the fate of RNAs. The potential contributions of m6 A to the functions of RNA still need further investigation. In this study, we identified long noncoding RNA FAM111A-DT as an m6 A-modified RNA and confirmed three m6 A sites on FAM111A-DT. The m6 A modification level of FAM111A-DT was increased in HCC tissues and cell lines, and increased m6 A level was correlated with poor survival of HCC patients. m6 A modification increased the stability of FAM111A-DT transcript, whose expression level showed similar clinical relevance to that of the m6 A level of FAM111A-DT. Functional assays found that only m6 A-modified FAM111A-DT promoted HCC cellular proliferation, DNA replication, and HCC tumor growth. Mutation of m6 A sites on FAM111A-DT abolished the roles of FAM111A-DT. Mechanistic investigations found that m6 A-modified FAM111A-DT bound to FAM111A promoter and also interacted with m6 A reader YTHDC1, which further bound and recruited histone demethylase KDM3B to FAM111A promoter, leading to the reduction of the repressive histone mark H3K9me2 and transcriptional activation of FAM111A. The expression of FAM111A was positively correlated with the m6 A level of FAM111A-DT, and the expression of methyltransferase complex, YTHDC1, and KDM3B in HCC tissues. Depletion of FAM111A largely attenuated the roles of m6 A-modified FAM111A-DT in HCC. In summary, the m6 A-modified FAM111A-DT/YTHDC1/KDM3B/FAM111A regulatory axis promoted HCC growth and represented a candidate therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Ativação Transcricional , Proliferação de Células/genética , RNA , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Receptores Virais/genética
16.
PLoS Pathog ; 19(7): e1011351, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37410700

RESUMO

Identification of host determinants of coronavirus infection informs mechanisms of pathogenesis and may provide novel therapeutic targets. Here, we demonstrate that the histone demethylase KDM6A promotes infection of diverse coronaviruses, including SARS-CoV, SARS-CoV-2, MERS-CoV and mouse hepatitis virus (MHV) in a demethylase activity-independent manner. Mechanistic studies reveal that KDM6A promotes viral entry by regulating expression of multiple coronavirus receptors, including ACE2, DPP4 and Ceacam1. Importantly, the TPR domain of KDM6A is required for recruitment of the histone methyltransferase KMT2D and histone deacetylase p300. Together this KDM6A-KMT2D-p300 complex localizes to the proximal and distal enhancers of ACE2 and regulates receptor expression. Notably, small molecule inhibition of p300 catalytic activity abrogates ACE2 and DPP4 expression and confers resistance to all major SARS-CoV-2 variants and MERS-CoV in primary human airway and intestinal epithelial cells. These data highlight the role for KDM6A-KMT2D-p300 complex activities in conferring diverse coronaviruses susceptibility and reveal a potential pan-coronavirus therapeutic target to combat current and emerging coronaviruses. One Sentence Summary: The KDM6A/KMT2D/EP300 axis promotes expression of multiple viral receptors and represents a potential drug target for diverse coronaviruses.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2/metabolismo , Dipeptidil Peptidase 4/metabolismo , Histona Desmetilases/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2/metabolismo
17.
Environ Sci Technol ; 57(46): 18038-18047, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37186679

RESUMO

Despite the fact that coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been disrupting human life and health worldwide since the outbreak in late 2019, the impact of exogenous substance exposure on the viral infection remains unclear. It is well-known that, during viral infection, organism receptors play a significant role in mediating the entry of viruses to enter host cells. A major receptor of SARS-CoV-2 is the angiotensin-converting enzyme 2 (ACE2). This study proposes a deep learning model based on the graph convolutional network (GCN) that enables, for the first time, the prediction of exogenous substances that affect the transcriptional expression of the ACE2 gene. It outperforms other machine learning models, achieving an area under receiver operating characteristic curve (AUROC) of 0.712 and 0.703 on the validation and internal test set, respectively. In addition, quantitative polymerase chain reaction (qPCR) experiments provided additional supporting evidence for indoor air pollutants identified by the GCN model. More broadly, the proposed methodology can be applied to predict the effect of environmental chemicals on the gene transcription of other virus receptors as well. In contrast to typical deep learning models that are of black box nature, we further highlight the interpretability of the proposed GCN model and how it facilitates deeper understanding of gene change at the structural level.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Receptores Virais/química , Receptores Virais/genética , Receptores Virais/metabolismo , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Transcrição Gênica
18.
Viruses ; 15(5)2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37243172

RESUMO

Glioblastoma (GBM) is the most common and aggressive adult brain cancer with an average survival rate of around 15 months in patients receiving standard treatment. Oncolytic adenovirus expressing therapeutic transgenes represent a promising alternative treatment for GBM. Of the many human adenoviral serotypes described to date, adenovirus 5 (HAdV-C5) has been the most utilised clinically and experimentally. However, the use of Ad5 as an anti-cancer agent may be hampered by naturally high seroprevalence rates to HAdV-C5 coupled with the infection of healthy cells via native receptors. To explore whether alternative natural adenoviral tropisms are better suited to GBM therapeutics, we pseudotyped an HAdV-C5-based platform using the fibre knob protein from alternative serotypes. We demonstrate that the adenoviral entry receptor coxsackie, adenovirus receptor (CAR) and CD46 are highly expressed by both GBM and healthy brain tissue, whereas Desmoglein 2 (DSG2) is expressed at a low level in GBM. We demonstrate that adenoviral pseudotypes, engaging CAR, CD46 and DSG2, effectively transduce GBM cells. However, the presence of these receptors on non-transformed cells presents the possibility of off-target effects and therapeutic transgene expression in healthy cells. To enhance the specificity of transgene expression to GBM, we assessed the potential for tumour-specific promoters hTERT and survivin to drive reporter gene expression selectively in GBM cell lines. We demonstrate tight GBM-specific transgene expression using these constructs, indicating that the combination of pseudotyping and tumour-specific promoter approaches may enable the development of efficacious therapies better suited to GBM.


Assuntos
Infecções por Adenoviridae , Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Estudos Soroepidemiológicos , Linhagem Celular Tumoral , Receptores Virais/genética , Adenoviridae/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Vetores Genéticos/genética
19.
PLoS Pathog ; 19(2): e1011168, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36812267

RESUMO

Angiotensin-converting enzyme 2 (ACE2), part of the renin-angiotensin system (RAS), serves as an entry point for SARS-CoV-2, leading to viral proliferation in permissive cell types. Using mouse lines in which the Ace2 locus has been humanized by syntenic replacement, we show that regulation of basal and interferon induced ACE2 expression, relative expression levels of different ACE2 transcripts, and sexual dimorphism in ACE2 expression are unique to each species, differ between tissues, and are determined by both intragenic and upstream promoter elements. Our results indicate that the higher levels of expression of ACE2 observed in the lungs of mice relative to humans may reflect the fact that the mouse promoter drives expression of ACE2 in populous airway club cells while the human promoter drives expression in alveolar type 2 (AT2) cells. In contrast to transgenic mice in which human ACE2 is expressed in ciliated cells under the control of the human FOXJ1 promoter, mice expressing ACE2 in club cells under the control of the endogenous Ace2 promoter show a robust immune response after infection with SARS-CoV-2, leading to rapid clearance of the virus. This supports a model in which differential expression of ACE2 determines which cell types in the lung are infected, and this in turn modulates the host response and outcome of COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Receptores Virais , Animais , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Camundongos Transgênicos , Receptores Virais/genética , SARS-CoV-2 , Tropismo Viral
20.
mBio ; 14(1): e0311422, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36645301

RESUMO

Wild-type canine distemper virus (CDV) is an important pathogen of dogs as well as wildlife that can infect immune and epithelial cells through two known receptors: the signaling lymphocytic activation molecule (SLAM) and nectin-4, respectively. Conversely, the ferret and egg-adapted CDV-Onderstepoort strain (CDV-OP) is employed as an effective vaccine for dogs. CDV-OP also exhibits promising oncolytic properties, such as its abilities to infect and kill multiple cancer cells in vitro. Interestingly, several cancer cells do not express SLAM or nectin-4, suggesting the presence of a yet unknown entry factor for CDV-OP. By conducting a genome-wide CRISPR/Cas9 knockout (KO) screen in CDV-OP-susceptible canine mammary carcinoma P114 cells, which neither express SLAM nor nectin-4, we identified low-density lipoprotein receptor-related protein 6 (LRP6) as a host factor that promotes CDV-OP infectivity. Whereas the genetic ablation of LRP6 rendered cells resistant to infection, ectopic expression in resistant LRP6KO cells restored susceptibility. Furthermore, multiple functional studies revealed that (i) the overexpression of LRP6 leads to increased cell-cell fusion, (ii) a soluble construct of the viral receptor-binding protein (solHOP) interacts with a soluble form of LRP6 (solLRP6), (iii) an H-OP point mutant that prevents interaction with solLRP6 abrogates cell entry in multiple cell lines once transferred into recombinant viral particles, and (iv) vesicular stomatitis virus (VSV) pseudotyped with CDV-OP envelope glycoproteins loses its infectivity in LRP6KO cells. Collectively, our study identified LRP6 as the long sought-after cell entry receptor of CDV-OP in multiple cell lines, which set the molecular bases to refine our understanding of viral-cell adaptation and to further investigate its oncolytic properties. IMPORTANCE Oncolytic viruses (OV) have gathered increasing interest in recent years as an alternative option to treat cancers. The Onderstepoort strain of canine distemper virus (CDV-OP), an enveloped RNA virus belonging to the genus Morbillivirus, is employed as a safe and efficient vaccine for dogs against distemper disease. Importantly, although CDV-OP can infect and kill multiple cancer cell lines, the basic mechanisms of entry remain to be elucidated, as most of those transformed cells do not express natural receptors (i.e., SLAM and nectin-4). In this study, using a genome-wide CRISPR/Cas9 knockout screen, we describe the discovery of LRP6 as a novel functional entry receptor for CDV-OP in various cancer cell lines and thereby uncover a basic mechanism of cell culture adaptation. Since LRP6 is upregulated in various cancer types, our data provide important insights in order to further investigate the oncolytic properties of CDV-OP.


Assuntos
Vírus da Cinomose Canina , Cinomose , Animais , Cães , Vírus da Cinomose Canina/genética , Nectinas/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Furões , Receptores Virais/genética , Receptores Virais/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Cinomose/prevenção & controle , Cinomose/genética , Cinomose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...